
cube.dev 1

How Rittman Analytics
delivers the semantic layer
today with Cube

Olivier Dupuis
CPO at Rittman Analytics

Lewis Baker
COO at Rittman Analytics

Brian Bickell
Head of Partnerships at Cube

Igor Lukanin
Head of Developer Relations at Cube

https://cube.dev/

cube.dev

Code of Conduct
We want to foster an open and welcoming environment where everyone
feels that they belong in the Cube community

The full text of our Code of Conduct is available at
github.com/cube-js/cube.js/blob/master/CODE_OF_CONDUCT.md

Any instances of inappropriate or unacceptable behavior shall be reported
to conduct@cube.dev

2

https://cube.dev/
https://github.com/cube-js/cube.js/blob/master/CODE_OF_CONDUCT.md
mailto:conduct@cube.dev

cube.dev

Quick notes
● If you have any questions, please type them in the “Q&A” section on Zoom

● We will be using Cube Cloud for demos

● Recording of the event will be available at the events page

● All attendees will receive a post-event survey and we’d appreciate your
feedback to help us with future events

3

https://cube.dev/
https://cube.dev/cloud/
https://cube.dev/events

cube.dev

What we will discuss today
● How Rittman Analytics approaches the data platform engineering and,

specifically, building semantic layers

● What is a semantic layer and how Cube implements it

● Deep-dive demos

● Q&A session

4

https://cube.dev/
https://www.rittmananalytics.com

cube.dev

Cube Partner Network

5

https://cube.dev/

cube.dev

Delivering semantic layers

7

https://cube.dev/

cube.dev 8

What is the purpose of a semantic layer?
● Derive meaning from data

● Allow formulating domain-specific questions on top of data

● Return meaningful answers

https://cube.dev/

cube.dev 9

What is a semantic layer?
A tool that superimposes an abstraction on top your data and exposes that
abstraction to data consumers.

Components of the abstraction:

● Domain-specific entities

● Relationships between those entities

● Entity attributes — can loosely be classified as either keys, dimensions,
and measures/metrics

● Descriptions of the entities and their attributes

https://cube.dev/

cube.dev 10

Why build a semantic layer?
You probably already have one!

● As data apps multiply in an organization, it’s important for uniform
representation of key entities, relationships, and metrics

● Value is in having consistent results when asking similar questions

● Improved collaboration and communication

● Faster query performance and development

● Simplified data governance

https://cube.dev/

cube.dev 11

Simple abstraction for product analytics

https://cube.dev/

cube.dev

Our approach to delivering semantic layers

12

● After years of consulting, we’ve developed opinions on engineering data
platforms for scalability, flexibility, efficiency, and quality

● Opinions formed around architecture, design principles, processes, and
technologies

● Same applies to semantic layers

● We’re still forming our opinion

https://cube.dev/

cube.dev 13

https://cube.dev/

cube.dev 14

Example — Simple product analytics

https://cube.dev/

cube.dev 15

Layers of our example
Data products
● Rudderstack as our raw product events data
● Product analytics as a simple abstraction on top of that data

Orchestration
● Dagster to materialize our assets in sequence

Semantic layer
● Cube to expose our simple abstraction, including a single entity (Events) and attributes
● Caching layer for performant queries

Data apps
● Cube Playground to test our abstraction and cache
● Superset to interact with the abstraction

https://cube.dev/
https://www.rudderstack.com
https://dagster.io
https://cube.dev
https://superset.apache.org

cube.dev

Demo 󰞵

16

https://cube.dev/

cube.dev

Delivering a simple abstraction of product data

17

Backup recording

https://cube.dev/
https://www.loom.com/share/c01d5e2891504139b362f649bad0b4a7

cube.dev

Cube as the engine for your abstraction

18

● Translates requests into SQL queries

● Caching and pre-aggregations

● Suite of API endpoints

● Cube Playground

● Access controls

https://cube.dev/

cube.dev

How Cube implements
the semantic layer

19

https://cube.dev/

cube.dev

Many-to-Many = Data Chaos

Data consumers are demanding
ALL the data apps

Data engineers are juggling
ALL the sources and outputs

20

https://cube.dev/

cube.dev

Cube — The Semantic Layer for Data Apps

21

https://cube.dev/

cube.dev

Modern Data Stack Needs a Semantic Layer

22

https://cube.dev/

cube.dev

Data Modeling

23

● Cube provides means to define the “components of the abstraction”

○ cubes, views, and joins
○ measures and dimensions

● Defined in a declarative, LookML-like models

● Reused by all downstream data apps

https://cube.dev/
https://cube.dev/blog/introducing-views

cube.dev

Caching

25

● Cube provides two-level caching:

○ in-memory cache — deduplicates identical queries
○ pre-aggregations — accelerates queries to sub-second latency

● You have full control over caching and sound default configuration

○ queries always hit the upstream data source — slow, costly
○ some queries are accelerated, other hit the upstream data source
○ all queries are accelerated, queries never go upstream

https://cube.dev/
https://cube.dev/blog/how-you-win-by-using-cube-store-part-1
https://cube.dev/docs/caching/pre-aggregations/getting-started

Caching — Simple configuration

cube.dev

APIs

28

● Cube provides a set of APIs to deliver data to downstream applications

○ SQL API — for BI tools, data notebooks, etc.
○ REST API and GraphQL API — for front-end applications

● Regardless of the API flavor, queries yield same results

● There’s also Cube Playground, a UI to compose queries

https://cube.dev/
https://cube.dev/docs/backend/sql
https://cube.dev/docs/query-format

APIs — Simple queries

APIs — Less simple queries

cube.dev

Practical considerations

32

https://cube.dev/

cube.dev

Modeling challenges

33

● Cube allows remodeling your data warehouse as you wish

● That flexibility requires additional design choices that will need to be
enforced to ensure quality of that layer

● Lewis will cover this, but we choose to do an almost exact replication of
our data warehouse schema

● But, I’ve also seen different approaches, such as exposing what would
have been Views in older approaches (or XA, extended aggregates)

https://cube.dev/

cube.dev

Caching

34

● Cube’s pre-aggregations are a very flexible solution. Of course, there are
alternatives if that better fits your architectural considerations

● Simplest approach is to not have caching and always directly query the
data warehouse. Obviously, there are costs associated to this

● You could rely on your BI’s caching as well. But then acceleration and
freshness/consistency would be specific to a single tool, not multi-tool

● A client decided to rely on BigQuery’s BI Engine to cache specific tables

https://cube.dev/

cube.dev 35

Harvesting metadata
● Semantic layer is a central repository of metadata that describes your

entities, relationships, attributes, etc. So there’s value in harvesting that
metadata from upstream systems

● Multiple sources, e.g., database metadata, dbt manifest file

● Lewis to share experience how Droughty sources metadata from
database’s information_schema

● Client working on consuming metadata from dbt jobs, including metric
definitions

https://cube.dev/
https://github.com/lewischarlesbaker/droughty

cube.dev

Q & A

36

https://cube.dev/

cube.dev

Modeling semantic definitions

37

https://cube.dev/

cube.dev

Agenda

38

● What problems does our approach solve?

● How are we doing it?— Concepts

● How are we doing it? — Tooling

● How quick (and accurately) can we do this?

https://cube.dev/

cube.dev

What problems does our approach solve?

39

● Moving beyond the unidirectional data model and making them flexible

● Solving the issues of explores ‘running out of road’

● Solving the sometimes poor integration between the decoupled tooling of
the modern data stack

● Making the cumbersome, DRY

● Speeding up delivery so that the analysis and activation of data is
prioritised over the organisation of it

● Imposes systematic testing and decreases errors through human input

● Embedding meaning into our models, not just ontologies. Semantics are
contextual and this offers better comprehension. Not to be confused with
metrics!

https://cube.dev/

cube.dev

How are we doing it — Concepts
● Headless semantic layers

● Coupling the semantic layer to the warehouse

● Using semantic inference to do this automatically

● Leveraging transitive joins for bi-directional queries

● Imposing symmetric aggregates

● Using warehouse metadata to enrich the meanings of entities

● Using semi-supervised ML models to resolve entities

40

https://cube.dev/

cube.dev

How are we doing it — Tooling
● dbt

● DWH

● Droughty (it’s open source!)

● Cube

41

https://cube.dev/
https://github.com/lewischarlesbaker/droughty

cube.dev

How quick can we do this?

43

Total: 51.85 seconds

https://cube.dev/

cube.dev

Demo 󰞵

44

https://cube.dev/

cube.dev 45

● Thanks to Olivier and Lewis from Rittman Analytics 🙌
● Check “What the heck is a semantic layer”

● Check “Building up a semantic layer with dbt Metrics, Cube and Droughty”

● Learn more about Droughty: github.com/lewischarlesbaker/droughty

● Learn more about Cube: cube.dev

● Join slack.cube.dev — the community of 8,000 data practitioners

● Consider implementing a semantic layer in your organization today

Wrapping up / Q&A

https://cube.dev/
https://www.rittmananalytics.com
https://cube.dev/blog/what-the-heck-is-the-headless-bi
https://www.rittmananalytics.com/blog/2023/2/24/building-up-a-semantic-layer-with-dbt-metrics-cube-and-droughty
https://github.com/lewischarlesbaker/droughty
https://cube.dev
https://slack.cube.dev

cube.dev 46

https://cube.dev/

